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Conformally Symmetric Anisotropic Magnetospheres in 
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A class of exact analytical solutions of Einstein-Maxwell equations is obtained 
for static spheres of Maugin's anisotropic magnetofluid where the space-time 
geometry is assumed to admit a nonstatic conformal symmetry. These solutions 
are found by utilizing special physical considerations. 

1. I N T R O D U C T I O N  

Einstein's field equations of  gravitation are highly nonlinear differential 
equations of  second order. Therefore it becomes necessary to impose some 
restrictions either on geometrical symmetries or on the dynamical system 
in obtaining exact solutions of  these equations. The conditions known as 
isometry, self-similarity, and conformal symmetry have been utilized in the 
theoretical development of  the subject. 

In this paper,  an at tempt is made to integrate the Einstein-Maxwell  
equations for spherically symmetric and static distributions of  matter 
possessing conformal symmetry. I f  the vector field ~ is the generator of  
this conformal symmetry, then the space-time metric gab iS mapped  confor- 
really onto itself along the trajectories of  ~, i.e., 

~ gab = Ogab (1A) 

where w is the Lie derivative operator and 0 = ~P(x a) is the conformal factor. 
The essentially geometric conditions (1.1) also have a physical support  

as a generalization of self-similarity in hydrodynamics (~ = const). Some 
self-similar solutions for special choices of  ~b and perfect fluids have been 
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extensively studied by Cahill and Taub (1971), Eardley (1974), Henriksen 
and Wesson (1978), and Bicnell and Henriksen (1978a, b), 

Here we obtain solutions by using condition (1.1) assuming that ~ is 
not only symmetric, but also nonstatic, and using a static value of 4'. 

The recent theoretical work by Ruderman (1972) and Canuto (1973) 
on more relativistic equations of state and stellar models has suggested the 
introduction of anisotropic matter. Several solutions have been found by 
Bower and Liang (1974), Herrera and Ponce de Leon (1985), and Ponce 
de Leon (1987a, b) by applying different methods corresponding to static 
anisotropic spheres. We use various ans~itze to find a class of static 
anisotropic spheres. The analytical solutions presented are physically 
reasonable and well behaved in the interior of a star. 

The paper is organized as follows. In Section 2 we give the general 
conventions and the field equations. In Section 3 we integrate the field 
equations by considering conformal symmetry. Here we obtain a class of 
solutions for nonstatic ~ and static ~. This class contains flat space-time. 
A model for locally isotropic matter distribution and for anisotropic fluids 
is displayed in Section 4. A case of vanishing tangential pressure and an 
idealized case of incompressibility (i.e., we assume that the energy density 
is constant) is dealt with in Section 5. In this section we also exhibit three 
solutions for the matter distributions using different equations of state. 

2. A SYSTEM OF FIELD EQUATIONS 

In Schwarzschild coordinates the line element for static, spherically 
symmetric space-time can be written as 

d s  2 = - e  a d r  2 - r 2 dO 2 - r 2 sin 2 0 d62A  - e ~ d t  2 (2.1) 

with 

x a = (r, 0, q~, t), h = h(r) ,  p = u ( r )  

We consider the total energy-momentum tensor Tab as the sum of the matter 
tensor Mab and the anisotropic pressure (stress) tensor ~'ab, i.e., 

Tab = Mab + crab (2.2) 

The matter tensor given by Maugin (1972) is used, which is obtained as a 
generalization of Lichnerowicz's (1967) scheme using the action principle. 
This scheme encompasses the effects of magnetization and polarization of 
the electromagnetic field on the internal structure of a relativistic magneto- 
fluid. The form of the stress energy tensor for this magnetofluid is taken as 

M ~ b = ( p + p + 2 m ) u a u b - - ( p + 2 r n - - m l z ) g a b - - t x H a H b  (2.3) 
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where p is the matter energy density, p is the isotropic pressure of  the fluid, 
/., is the constant magnetic permeability,  and u ~ is the four-velocity of  the 
fluid such that 

u Ou~ = 1 (2.4) 

Here H ~ is the spacelike magnetic field vector satisfying the relations 

HOH~ = - h  2, u a H a  = 0 (2.5) 

and 

2m =/xh 2 (2.6) 

The Einstein-Maxwell  equations for the magnetofluid under investiga- 
tion are 

R,b = �89 = Krab (2.7) 

( u ~  ~ - ubH~ = 0 (2.8) 

For the choice of  eomoving coordinate system, the four-velocity of  the fluid 
can be taken as 

u a = (0 ,  0,  0, e -~ /2 )  (2 .9 )  

Hence, the space-time admitting spherical symmetry with orthogonality 
condition between u ~ and H a gives rise to 

H ~ : (0, 0, 0, H 1) 

so that the Maxwell equations (2.8) yield 

N 2 
h 2= - H I H  l -  r4 (2.10) 

and 

/~N 2 
Y(/= 2/.4 (2,11) 

where N is an arbitrary integration constant. 
Due to the chosen symmetry,  the energy density p, isotropic pressure 

p, and stress tensor crab take the form (Maartens and Maharaj ,  1990) 

p = p ( r )  (2.12) 

p -- k[PR (r) + 2 p r ( r ) ]  (2.13) 

"]'gab = (PR -- Pr ) (n ,nb  --khab) (2.14) 
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where n a is a unit radial vector such that 

n a = e-~/2~ (2.15) 

PR is the radial pressure, and hab = gab -- UaUb is the projection tensor. 
Clearly, 

N n a  (2.16) 
H~ 7 

By obtaining componentwise evaluations, we derive the field equations 
(2.7) in explicit form as follows: 

K ( P R  - mix) = - r  -2 e - a ( r v ' +  1) + r -2 (2.17) 

K ( P r + 2 m - r n i x ) = - ~ e - X [ 2 u " + r - l ( ~ , ' - A ' ) ( 2 + r p ' ) ]  (2.18) 

K ( p  + re~x) = - r  -2 e-X(rh  ' -  1) - r -2 (2.19) 

Here the value of m is given by equation (2.11). 

3. A GROUP OF CONFORMAL MOTIONS AND 
ASSOCIATED SOLUTIONS 

One method to solve the field equations (2.17)-(2.19) is to assume that 
the fluid space-time is mapped conformally onto itself along the direction 
g, so that by (1.1) the necessary conditions are 

gab, c ~c d- gcbC~C,a + gacc~Cb : t~gab (3.1) 

We take the vector field ~ in the particular form 

~ =  or(r, t)tSr q ' f l ( r  , t)t~ t (3.2) 

Further, we assume that the conformal factor is static, i.e., 

tp = ~b(r) (3.3) 

By utilizing equations (2.1), (3.2), and (3.3) in equation (3.1), we get 

r = A + �89 (3.4) 

a = �89 e -~/2 (3.5) 

~b = C e -~/2 (3.6) 

~2 2 [ 2B f e  ~/2 \ 
e v = . r  exp / - - -  ~- J T d r )  (3.7) 

where A, B, C, and D are arbitrary constants. 
Thus, we have 

= ~q, r6, + ( A + � 8 9  (3.8) 
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This generalizes the form of the isotropic conformal vector r6r+ tS, of 
Minkowski space-time. 

The line element (2.1), using equations (3.6) and (3.7), yields 

( I , dr 2 - r  2dO 2 - r  2sin 20d~b2D2r2exp - 2 B  ~-~ dt 2 (3.9) 

This solution (3.9) represents a class of spherically symmetric static space- 
time models for the universe filled with a Maugin anisotropic magnetofluid 
admitting conformal symmetry. 

Comment s  on Metr ic  Form (3.9): 

1. The solutions obtained by Herrera et al. (1984) and Aherkar and 
Asgekar (1990) belong to the class B = 0 .  

2. Also, we can generate some magnetospheres following a group of 
homothetic motions by considering O = const, 

ds z = E dr 2 - r 2 dO 2 -  r 2 sin 2 0 d492+ D 2 r  2-2B/0 dt 2 (3.10) 

where E is a constant. 
This solution (3.10) is a generalization of the Tolman solution (Wain- 

wright, 1985), since the self-similar Tolman solution can be obtained by 
putting A = 0, B = ( 2 -  l ) /b l ,  D = 1, E = b 2 in (3.10). Also, we find that the 
solution obtained by Maartens and Maharaj (1990) for A = 0=  O' can be 
matched with the solution (3.10) by putting E = 1/4` 2. 

Note.  For any choice of 4' the expressions for the matter density, radial 
and tangential pressures, and magnitude of the magnetic field can respec- 
tively be obtained from equations (2.11), (2.17), (2.18), and (2.19) as 

4`2 200'  
K p  = C2r---~-+ C2 r 

302 2BO 
K P R -  C2r 2 C2r2 

4, 2 2~0' 
K P T = c 2 r 2 - ~  C2r 

h 2 N 2 
= - - 7  

r 

1 KIx2N 2 
r2 2r 4 (3.11) 

1 K t z 2 N  ~ 
- -  (3.12) 

r ~ 2 r  4 

2B4` B 2 KIx 2 N 2 K I x N  2 

C2r~ ~ C2r2 2 r  4 r4 (3.13) 

From the definitions of the parameters associated with the timelike 
unit congruences u" as given by Greenberg (1970), it is clear that for the 
model (3.9), the flow is expansion-free, nonshearing, and irrotational, while 
the acceleration is given by 

ti e _ (4` - B) 2 
_ C 2 r  2 (3.14) 
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Also, we claim that the relative anisotropy for the model vanishes (i.e., 
o'21p = 0). 

In order to determine the unknown functions p, PR, PT, and ~O, it is 
necessary to introduce additional assumptions. Instead of keeping the 
function ~ arbitrary, we shall find some solutions of the field equations 
under the constraints of physically meaningful assumptions in further 
sections. 

4. MEASURE OF PRESSURE ANISOTROPY 

It is always useful to define the measure of pressure anisotropy as 

A = K(PT - Pc) 

From equations (3.12) and (3.13) we obtain 

1 (2~b0'--~024 A = K ( P T -  PR)= C2---~ 

For the sake of simplicity we consider 

(4.1) 

B2 + C2 .KN2C2'~ 
r r3 ] (4.2) 

A = K(PT--PR) = rf'(r) (4.3) 

where f ( r )  is an arbitrary function of r. 
Equations (4.2) and (4.3) imply 

26q/ 2 02= r2C2f,(r)_ B2+ C 2 I~KN2C 2 (4.4) 
---- ~ r 3 r r 

These can be solved under standard methods to obtain the value of 02 as 

~02= r2[ C2f(r)+ C1]-~ B2 + C~ IzKN2C 2 (4.5) 
2 4r 2 

where C1 is a constant of integration. 
For C = 0 = C1, we get the solution representing homothetic spheres 

with special anisotropy (4.3). For f ( r ) =  0, that is, for a locally isotropic 
magnetofluid, we get the solution as 

B2"~- C2 I '~KN2C2 (4.6) 
02= Clr2-~ 2 4r 2 

This matches with the solution obtained by Aherkar and Asgekar (1990). 
Clearly (4.6) gives a solution for homothetic spheres with a locally isotropic 
magnetofluid when C = 0 = C1. Also, a model of constant anisotropy can 
be obtained in the form 

B 2 ~  C2 I~KN2C2 (4.7) 
t~ 2 = r2(C2C2 log r+ C3C2+ C1)-~ 2 4r 2 

by substituting f ( r )  = C2 log r+  C3, where C2 and C3 are constants. 
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The solution (4.7) under  the restrictions C = 0 = C1 gives homothetic  
spheres with constant anisotropy. 

5. A CLASS OF S O L U T I O N S  WITH P HY SICAL RESTRICTIONS 

5.1. Vanishing Tangential Pressures 

Let us consider the case P r  = 0. Hence, equation (3.13) with P r  = 0 is 
easily integrated by taking B = 0, 

r r2 1 - (5.1) 

where C4 is a constant of  integration. 

5.2. Uniform Energy Density 

The simplest form of  the matter  distribution throughout  the interior is 
the uniform density. 

Integrate equation (3.11) with p = const : Cs, we find 

~b 2= C 2 =-~- Csr: + C6 t.~2 N2 C2 K 
r 2r 2 (5.2) 

where C6 is a constant of  integration. 

5~3. Equation of State 

The well-known equation of  state is 

PR(Y - 1)p (5.3) 

According to (3.11) and (3.12), different solutions may be obtained by 
specifying the choice of  y. 

5.3.1. Dust-Filled Universe 

The value of 0 for a dust-filled universe (i.e., PR = 0) is given as 

~2= C7-  C z- lx2N2C2K 
3r 2 (5.4) 

where C7 is a constant of  integration. 

3".3.2. A Radiating Universe 

For a radiating universe (p = 3PR), we find 

2 2N2p2K 
(5.5) 5r 2 
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5.3.3. Super-Dust  Model  

F o r  the  v a l u e  3' = 2, e q u a t i o n  (5.3) gives us  a s u p e r - d u s t  m o d e l ,  for  
w h i c h  we o b t a i n  

1~2 N 2  K C 2 
~b 2 =  C7 2 r  2 (5.6) 

Remark .  The  r e l a t i o n s  b e t w e e n  v a r i o u s  a rb i t r a ry  c o n s t a n t s  c a n  be  
o b t a i n e d  f r o m  the  in i t i a l  a n d  b o u n d a r y  c o n d i t i o n s  i m p o s e d  o n  the  sys t em 
so as to m a k e  it cons i s t en t .  
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